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Stable equilibrium based on Levy statistics: Stochastic collision models approach
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We investigate equilibrium properties of two very different stochastic collision modglshe Rayleigh
particle and(ii) the driven Maxwell gas. For both models the equilibrium velocity distribution is ayLe
distribution, the Maxwell distribution being a special case. We show how these models are related to fractional
kinetic equations. Our work demonstrates that a stable power-law equilibrium, which is independent of details
of the underlying models, is a natural generalization of Maxwell’s velocity distribution.
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There is a strong analogy between the Gaussian centrdbes not change during the collision process, indicating that
limit theorem(GCLT) and the relaxation to thermal equilib- re-collisions of the gas particles and the tracer particle are
rium of the Boltzmann equatioRef. [1] and references neglected.
therein. However, the GCLT is nonunique, which may imply ~ Many works considered this type of model, imposing the
that standard thermal equilibrium is nonunique. Thante condition that the gas particles are distributed according to
central limit theorem(LCLT) considers the case of summa- Maxwell’s law, i.e.,f(v,,) is Maxwellian. Since we are now
tion of independent identically distributed random variablesinvestigating possible generalizations of Maxwell's law we
with an infinite variance[2]. Hence following Montroll and change this strategy and assume th‘zﬁm) is non-
Shlesinger it is natural to ask if generalized equilibrium con-Maxwellian. The goal is to see when and how the tracer
cepts based on LCLT are meaningf@l. Here we start an- particle reaches a universal equilibrium, which does not de-
swering this question using two very different types of col-pend on the detailed shape ).
lision models which still reveal the same type of equilibrium.  We now consider the equation of motion for the tracer
We note that [ey statistics has many physical applications particle velocity PDFW(V), ,t) with initial conditions con-

[4], however, its possible relation to generalized forms ofcentrated onV),(0). Standard kinetic considerations yield
equilibrium statistical mechanics is an open field of researchthe linear Boltzmann equation

Recently, Bobylev and Cercignali] investigated a nonlin-
ear Boltzmann equation with an infinite velocity variance
showing that the solution exists, and obtaining certain
bounds on it. In Ref{1] the possibility of a relation between _ _
solutions of the Boltzmann equatiofb] and LCLT was XW(Vy D f () (V= &1V — Eovm),

briefly pointed out. 1)

Our goal in this paper is to show that an alternative equi-
librium concept naturally emerges from old stochastic colli-where the delta function gives the constraint on energy and
sion models. Our models demonstrate tiigtLévy velocity — momentum conservation in collision events. As usual, the
distributions serve as the natural generalization of the Maxfirst (secondl term in Eq.(1) describes a tracer patrticle leav-
well velocity distribution (i) generalized power-law equilib- ing (entering the velocity pointV,, at timet. Equation(1)
rium can be derived from kinetic modelbere is no need to contains convolution integrals in velocity space, hence we
postulate a specific form of power-law equilibriuamd(iii) ~ consider now its Fourier transforffT). Let W(k,t) be the
the Levy equilibrium obtained here possesses a certain doFT of the velocity PDRNV(V,, ,t). Using Eq.(1), the equa-
main of attraction, is unique, and does not depend on certaifion of motion for W(k,t) is a finite difference nonlocal
details of the underlying models. equation,

Model 1 We consider a one-dimensional tracer particle
with the mfassM coupled_ with gas parﬂcle; of mass The W(k,t)= — RWk,t) + RWkE, 1) F(KE,), )
tracer particle velocity is/y,. At random times the tracer

particle collides with gas particles whose velocity is denmedwheref_(k) is the FT off (3,,). The solution of the equation

with v,. Collisions are elastic hence from conservation of o motion, Eq.(2), is obtained by iterations
momentum and energyy,=&,Vy+ &uvm, wWhere &=(1

oo

W(VM,t)=—va(vM,T)+Rf de dom

—€)l(1+¢€), &,=2€el(1+€), e=m/M is the massratio,and  _ “ (RH" exp —RY) KV (0)¢" o i
Vyy (Vy) is the velocity of the tracer particle aftéseforg a W(k,t)= ngo e v Il;[l f(kéy &2).
collision event. The duration of the collision events is much 3)

shorter than any other time scale in the problem. The colli-
sions occur at a uniform rat The probability density func-  This solution has a simple interpretation. The probability that
tion (PDF) of the gas particle velocity i$(v,,). This PDF the tracer particle has collidedtimes with the gas particles
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is given according to the Poisson lawP,(t) — T , U4 T 4 6
=[(R)"Yn!Jexp(-RY. Let W,(Vy) be the PDF of the MWeq(K]1=—5_0a(e)k™+ ——{ | ga(e)k™+O(K),
tracer particle conditioned that the particle experiencesl- (7)
lision events. It can be shown that the FT (V) is

V_\/n(k):eikvm(0)§2]‘[i”=1f_(k§2*i§2)_ Thus Eq.(3) is a sum Where gy(€)=(2€)"/[(1+€)"~(1~¢)"]. The interesting
over the probability of having collision events in time in- thing to notice is that in the limie—0, the second term on

collision event. parameter in the problem. In a similar way one can show that

all terms in the expansion containiig,, with n>1 vanish-

In the long-time limitWeq(k) =lim, ... W(k,t) an equilib- -0 5 "o ieion limite— 0. Thus using Eq(7)

rium is obtained from Eq(3). We notice that wherRt
—oo, P,(t)=(Rt)"exp(—RiY)/n! is peaked in the vicinity of

2 — T
(n)=Rt, hence it is easy to see that IirrLIn[Weq(k)]= - mkz. (8)
n
W (k)= lim Fke" T £, 4 From Eq.(8) it is easy to see that the Maxwell velocity PDF
ed(k) o i];[l (ké1 &) @ for the tracer particlM is obtained. Thus as expected Max-

well’s equilibrium is stable in the sense that for a large class

. . . . . of gas particle velocity PDF's Maxwell equilibrium is ob-
In what follows we investigate properties of this equilibrium. tained

We note that similar equilibrium can be obtained also if the N that (5 h law behavi
collision process is not described by the Poisson law, an ow we af’(slliT)e (um) has a power-law behavior,
€., g(x)=|x| when |x|—o and 0<a<2. For this

P,(t) which is peaked om—« whent—o, with (nearly h icle ch istic f T
zero support for finite values of, will exhibit this behavior, €€ the gas particle characteristic function is

We will consider the Rayleigh weak collision limi - q T\ a2 q T\ A2
—0. This limit is important since number of collisions  f(k)=1— ———| — |k|a+—ﬁ _) k| A
needed for the tracer particle to reach an equilibrium is very F(1+a)im F(1+p)\m
large. Hence in this case we may expect the emergence of a +o(|k|?), )

general equilibrium concept which is not sensitive to the

precise details of the vel'oc.ity PDRv,,) _of the gas partiples. where a<pB<2a. q, and qz are dimensionless numbers
We assume that statistical properties of gas particles vayhich depend of course am(x). Without loss of generality
locities can be characterized with an energy s@alginceT,  we may seig,=1. In Eq.(9) we have used the assumption

m, andv,, are the only variables describing the gas particlethatf(}}m) is even.
we have Inserting Eq.(9) in Eq. (4) we obtain a smalk expansion
IN[We(K)]. Taking the limit e—0 one can show that the

_ 1 Um terms containing; are much smaller than the leading term
f(Um):—m Fim)” ) In[Wey(K)]=—|K Thusqgs, and in a similar way higher-

order coefficients, become the irrelevant parameters of the
problem. Thus we find that the tracer particle equilibrium
We also assume thé{v,,;) is an even function, as expected characteristic function is

from symmetry. The dimensionless functigfx) =0 satis-

fies a normalization conditiofi” .q(x)dx=1, otherwise it Wk 2071 [ T\2 |k« 10
is rather general. The scaling assumption made in(&qjs eq(k)~exg — al(1+a)\M el-al|’ (10
very natural, since the total energy of gas particles is nearly

conserved. 5 thus a Ley velocity distribution for the tracer particle is

We first consider the case where moments @f,,) are  obtained. Fora# 2 the equilibrium Eq(10) depends or,
finite. The second moment of the gas particle velocity iswhile for the Maxwell’s caser=2, the equilibrium is inde-
(viy=(T/m) [~..x?q(x)dx. Without loss of generality we pendent of the coupling constast Equation(10) implies
set [*_.x?q(x)dx=1. The scaling behavior Eq5) yields that variancltﬁ of the V?AOCityldi\_/tefgd?St Yéh?mzl- F%f thet
~2ny _ n - non-Maxwellian case the velocity distribution is character-
(o >—.(T/m) qzﬂ’ ZVhezrf the moments af(x) are defined ized by the scaleT/M)*”2 which dgtermines the width of the
according tog,,= f~ .. x"q(x)dx. Thus the smalk expan-

sion of the gas particle characteristic function is velocity distribution.
gasp The asymptotic behavior Eq10) is now demonstrated

using numerical examples. We consider three types of gas

— k2 2k* particle velocity PDF’s, for large values ¢f,,|— these
=1- — —| — 6 ~ ~ m
FR)=1=5m T8l ) 21 TOKD- © PDF's exhibit f(vy)*|vy %2 namely a=3/2. Case 1
f(0m) =N, /[1+323/m/(4T)[v,|1%%  case 2, f(vy)
Inserting Eq.(6) in Eq. (4) we obtain =N,/[1+ mﬂﬁq/(o.4391')]5’4, whereN; andN, are normal-
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' ' ' ' noise. In those investigations dissipation and fluctuations
were treated as though they are independent, hence the equi-
librium obtained there differs from ours.

Model 2 The question remaining is whether weequi-
librium a general feature, which might be obtained from
other collision models. Specifically, it is interesting to see if
Lévy equilibrium is compatible with a nonlinear Boltzmann
equation approach, since one may suspect that thig he-
havior obtained so far is limited to linear Boltzmann models.
For this aim we investigated the one-dimensioraD)
driven inelastic Maxwell mode(DIMM). This model was
investigated extensively in recent years in the context of in-
elastic gases assuming finite variance boundary conditions
(see details belowf10,11]. Our goal is to investigate DIMM
in the quasielastic limit showing that g statistics de-
scribes the equilibrium; the Maxwell-Gauss distribution

W

is

FIG. 1. We show the FT of the equilibrium velocity distribution

of the tracer particle. Numerically exact solutions of the problemreco,v‘:}n:}d 'n_the proper “m,'t' .
are obtained using three long tailed gas particle velocity PDF's First consider the inelastic Maxwell model in thbsence

defined in text: case 1 squares, case 2 triangles, and case 3 diaf external driving forcesV(V,t)=1(V,W), where the non-
monds. The tracer particle equilibrium is well approximated by thelinear collision integral is
Lévy distribution the solid curveyV,q(k) ~exp(-2.211k/ €9*?).

For the numerical results we us@d=4.555, e=1e—5, and M —qu

=1. [(V,W)=—W(V,t)+ f W(u ( ,t)du.
ization constants. Case 3, the gas particle velocity PDF, (13
is a Lesy PDF with index 3/2 whose FT isf(k)

=exf — (T/m)>{|k|¥4T (5/2)]1. In Eq. (13) p=(r +1)/2 andq=1—p wherer is the restitu-

According to our theory these power-law velocity PDF's tion coefficient 0<r<1. The kinetic scheme describes a
yield a Levy equilibrium for the tracer particle when the sjtuation where momentum is conserved during collision
mass ratio becomes small, EG.0). In Fig. 1 we show nu-  events, while energy is conserved only wheal. If r<1
merically exact solution of the problem for cases 1-3. Thesghe steady state solution of E(L3) is W (V)= 8(V), re-
solutions, obtained using E¢) for finite values ofe, show  flecting the loss of energy during collision events. Note that
a good agreement between numerical results and th@yr elastic collisiong =1, any initial velocity distribution is
asymptotic theory. The vy equilibrium for the tracer par- a steady-state solution. This is expectedid not informa-

ticle is not sensitive to precise shape of the velocity distributjve) since two identical 1D elastic particles exchange their
tion of the gas patrticle, and hence like the Maxwell distribu-ye|ocities in collision events.

tion is stable.
Lthtbth FT ofW(V,t). The b d di-
We now consider a Fokker-Planck equation which de- et W(k.t) be the OfW(V.t). The boundary cond
‘tions we will consider are
scribes the evolution of the tracer particle POV, ,t)
towards the Ley equilibrium Eq.(10). The equation is of
fractional order and is obtained using a sna#xpansion of Wik (V) IK]“ 14
Eq. (1) (details to be published (KO~ Tt a) (149

IW(Vy,t) D 9°W(Vy,t)
at 6l*a/2 5|VM|a

+y i [VuW(Vy ,t)]. for small k. SinceW(V,t) is a non-negative PDF we have
Ny 0<a<2. Using the Boltzmann equatiaid3) it is easy to
(1) show that in the elastic limit=1, d(|V|*)/at=0. For the
standard case=2 considered in Refl11], Eq. (14) simply
reflects energy conservation, i.€y?) is a constant of mo-
tion. Fora<2, (|V|*) describes the width of the probability

In Eqg. (11) the Riesz fractional derivative was uset, and
the dissipation term ig=2€R. A generalized Einstein rela-

tion, packet, which for elastic collision is a conserved quantity.
pa-1 [T\ ak As mentioned, wherr<1 the inelastic collisions will
D=— | — ¥, (12) shrink any initial probability packet to be concentrated on
I'(l+a)|M V=0. Similar to previous work11], aninfinitesimalheating

. term is added to the equation of motion, which compensates
yields the relation between the transport coefficidbtand  the energy loss. We will consider the boundary conditions
v. Whena=2 the Einstein relation is recovered. Note thatdescribed in Eq(14), while Ref.[11] considered the Gauss-
Refs.[6-9] investigated related fractional processes baseihn casea=2. To obtain behavior compatible with E(.4)
on a stochastic approa¢®.g., Langevin equations with izg ~ we consider the fractional DIMM,
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AW(V, 1) WV, t) where_linhﬁmz,//n(k)jz/;(k)_ and the “initial condition” is
o+ Pa —=1(V,W). (15  ¢o(k)=—In[1+D,lk*]. Using these rules and some algebra
J|V| involving series expansions, we find

It is more convenient to consider this fractional equation in " T
Fourier space; this yields the nonlinear and nonlocal equa- sy=—3 (=)™ HK|*"Dg 2
tion =1 n(l_qan_pan) !

Wk, ) + (14D k| *)W(k,t) = W(pk ) W(gkt). where the condition £ @<2 was used. Inserting E¢L7) in

Eqg. (21) we obtain

For our aim this equation gives the definition of the frac-
tional derivative in Eqg.(15). Our aim is to investigate the |k|® a(l-r)  |k[%@ .
steady-state solution of this equation in the quasielastic limit Pk =- I'(1+a) 8 [T(1+a)]? +O([K[*).
whenD_,—0 andr—1. This limit is taken in such a way (22)

that the boundary condition E@l4) is satisfied.
Using the conditiond(|V|*)/ot=0, and Egs.(14) and

(16) we obtain The interesting thing to notice is that the second term on the

right-hand side of Eq(22) vanishes when the elastic limit
(V%) r—1 is considered. Inserting EQL7) in Eq. (21) one can
== (1—p*—q%). (170 show that in the elastic limit lim,,y(k)=—|k|*/T(1
I'(1+a) +a). Hence the steady-state characteristic function is a
stretched exponential,

D

Without loss of generality we may set naWw|“)=1. For
a=1 we haveD ,=0, while for 0< <1 D, obtains nega-
tive values. The case=1 marks the transition between a limW. s(k)zexp{
finite (a>1) and infinite @<1) first-order moment of ve- 1

locity [*..|V|W(V,t)dV. For a<1 no steady state is ob-

tained, since the dissipation dug to collisions is_not stronghe inverse Fourier transforffT) of this equation yields the
enough to compensate the heating. Our results in what fokymmetric stable Ley density[2]. It is rewarding to find that

|kl

Tra) *

lows are restricted to L a<2. o Maxwell and Lery equilibriums are obtained only in the
Steady-state solution of E¢L6) satisfies elastic limit, thus conservation of energy in the collision
— — — events is related to the kg-Maxwell behavior. Far from this
(14D [ K[*)Wsd k) =Ws{ pk)Ws (k). (18 limit results not directly related to the Gaussviyecentral

An iteration method is used to obtain the solution. LetIIrnIt theorem are obtained, EG21). . :

= _ To conclude, we demonstrated the relation between equi-
#(K)=In[Ws{K)], and using Eq(18) we have librium properties of very different types of collision models

_ _ a and Levy statistics. Thus stable behavior transcends details

$(K) = §(pK)+ $(ak)~In[1+ D, [k[*]. (19 of individual models and hence, | suspect, can be found in

The boundary condition Eq14) yields y(k)~ —|k|*/T(1 ~ other types of collision models. To support the idea thatyLe

rule the interesting work of Miret al. [12] who used numerical

simulations of a long-range interacting vortex model, and
Un+1(K) =, (pK) + (k) —IN[1+D,|k|*], (200  showed that distribution of velocity fields are\yestable.
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