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Stable equilibrium based on Lévy statistics: Stochastic collision models approach
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~Received 3 April 2003; published 25 November 2003!

We investigate equilibrium properties of two very different stochastic collision models:~i! the Rayleigh
particle and~ii ! the driven Maxwell gas. For both models the equilibrium velocity distribution is a Le´vy
distribution, the Maxwell distribution being a special case. We show how these models are related to fractional
kinetic equations. Our work demonstrates that a stable power-law equilibrium, which is independent of details
of the underlying models, is a natural generalization of Maxwell’s velocity distribution.
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There is a strong analogy between the Gaussian ce
limit theorem~GCLT! and the relaxation to thermal equilib
rium of the Boltzmann equation~Ref. @1# and references
therein!. However, the GCLT is nonunique, which may imp
that standard thermal equilibrium is nonunique. The Le´vy
central limit theorem~LCLT! considers the case of summ
tion of independent identically distributed random variab
with an infinite variance@2#. Hence following Montroll and
Shlesinger it is natural to ask if generalized equilibrium co
cepts based on LCLT are meaningful@3#. Here we start an-
swering this question using two very different types of c
lision models which still reveal the same type of equilibriu
We note that Le´vy statistics has many physical applicatio
@4#, however, its possible relation to generalized forms
equilibrium statistical mechanics is an open field of resea
Recently, Bobylev and Cercignani@1# investigated a nonlin-
ear Boltzmann equation with an infinite velocity varian
showing that the solution exists, and obtaining cert
bounds on it. In Ref.@1# the possibility of a relation betwee
solutions of the Boltzmann equation@5# and LCLT was
briefly pointed out.

Our goal in this paper is to show that an alternative eq
librium concept naturally emerges from old stochastic co
sion models. Our models demonstrate that:~i! Lévy velocity
distributions serve as the natural generalization of the M
well velocity distribution,~ii ! generalized power-law equilib
rium can be derived from kinetic models,there is no need to
postulate a specific form of power-law equilibrium, and~iii !
the Lévy equilibrium obtained here possesses a certain
main of attraction, is unique, and does not depend on cer
details of the underlying models.

Model 1. We consider a one-dimensional tracer parti
with the massM coupled with gas particles of massm. The
tracer particle velocity isVM . At random times the trace
particle collides with gas particles whose velocity is deno
with ṽm . Collisions are elastic hence from conservation
momentum and energyVM

15j1VM
21j2ṽm , where j15(1

2e)/(11e), j252e/(11e), e[m/M is the mass ratio, and
VM

1 (VM
2) is the velocity of the tracer particle after~before! a

collision event. The duration of the collision events is mu
shorter than any other time scale in the problem. The co
sions occur at a uniform rateR. The probability density func-
tion ~PDF! of the gas particle velocity isf ( ṽm). This PDF
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does not change during the collision process, indicating
re-collisions of the gas particles and the tracer particle
neglected.

Many works considered this type of model, imposing t
condition that the gas particles are distributed according
Maxwell’s law, i.e., f ( ṽm) is Maxwellian. Since we are now
investigating possible generalizations of Maxwell’s law w
change this strategy and assume thatf ( ṽm) is non-
Maxwellian. The goal is to see when and how the tra
particle reaches a universal equilibrium, which does not
pend on the detailed shape off ( ṽm).

We now consider the equation of motion for the trac
particle velocity PDFW(VM ,t) with initial conditions con-
centrated onVM(0). Standard kinetic considerations yie
the linear Boltzmann equation

Ẇ~VM ,t !52RW~VM ,T!1RE
2`

`

dVM
2E

2`

`

dṽm

3W~VM
2 ,t ! f ~ ṽm!d~VM2j1VM

22j2ṽm!,

~1!

where the delta function gives the constraint on energy
momentum conservation in collision events. As usual,
first ~second! term in Eq.~1! describes a tracer particle leav
ing ~entering! the velocity pointVM at time t. Equation~1!
contains convolution integrals in velocity space, hence
consider now its Fourier transform~FT!. Let W̄(k,t) be the
FT of the velocity PDFW(VM ,t). Using Eq.~1!, the equa-
tion of motion for W̄(k,t) is a finite difference nonloca
equation,

Ẇ̄~k,t !52RW̄~k,t !1RW̄~kj1 ,t ! f̄ ~kj2!, ~2!

where f̄ (k) is the FT of f ( ṽm). The solution of the equation
of motion, Eq.~2!, is obtained by iterations

W̄~k,t !5 (
n50

`
~Rt!n exp~2Rt!

n!
eikVM(0)j1

n

)
i 51

n

f̄ ~kj1
n2 ij2!.

~3!

This solution has a simple interpretation. The probability th
the tracer particle has collidedn times with the gas particles
©2003 The American Physical Society04-1
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is given according to the Poisson lawPn(t)
5@(Rt)n/n! #exp(2Rt). Let Wn(VM) be the PDF of the
tracer particle conditioned that the particle experiencesn col-
lision events. It can be shown that the FT ofWn(VM) is

W̄n(k)5eikVM(0)j1
n
P i 51

n f̄ (kj1
n2 ij2). Thus Eq.~3! is a sum

over the probability of havingn collision events in time in-
terval (0,t) times the FT of the velocity PDF after exactlyn
collision event.

In the long-time limitW̄eq(k)[ limt→`W̄(k,t) an equilib-
rium is obtained from Eq.~3!. We notice that whenRt
→`, Pn(t)5(Rt)nexp(2Rt)/n! is peaked in the vicinity of
^n&5Rt, hence it is easy to see that

W̄eq~k!5 lim
n→`

)
i 51

n

f̄ ~kj1
n2 ij2!. ~4!

In what follows we investigate properties of this equilibrium
We note that similar equilibrium can be obtained also if t
collision process is not described by the Poisson law,
Pn(t) which is peaked onn→` when t→`, with ~nearly!
zero support for finite values ofn, will exhibit this behavior.

We will consider the Rayleigh weak collision limite
→0. This limit is important since number of collision
needed for the tracer particle to reach an equilibrium is v
large. Hence in this case we may expect the emergence
general equilibrium concept which is not sensitive to t
precise details of the velocity PDFf ( ṽm) of the gas particles

We assume that statistical properties of gas particles
locities can be characterized with an energy scaleT. SinceT,
m, and ṽm are the only variables describing the gas parti
we have

f ~ ṽm!5
1

AT/m
qS ṽm

AT/m
D . ~5!

We also assume thatf ( ṽm) is an even function, as expecte
from symmetry. The dimensionless functionq(x)>0 satis-
fies a normalization condition*2`

` q(x)dx51, otherwise it
is rather general. The scaling assumption made in Eq.~5! is
very natural, since the total energy of gas particles is ne
conserved.

We first consider the case where moments off ( ṽm) are
finite. The second moment of the gas particle velocity

^ṽm
2 &5 (T/m) *2`

` x2q(x)dx. Without loss of generality we
set *2`

` x2q(x)dx51. The scaling behavior Eq.~5! yields

^ṽm
2n&5(T/m)nq2n , where the moments ofq(x) are defined

according toq2n5*2`
` x2nq(x)dx. Thus the smallk expan-

sion of the gas particle characteristic function is

f̄ ~k!512
Tk2

2m
1q4S T

mD 2k4

4!
1O~k6!. ~6!

Inserting Eq.~6! in Eq. ~4! we obtain
05510
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ln@W̄eq~k!#52
T

2m
g2~e!k21

q423

4! S T

mD 2

g4~e!k41O~k6!,

~7!

where gn(e)5(2e)n/@(11e)n2(12e)n#. The interesting
thing to notice is that in the limite→0, the second term on
the right hand side of Eq.~7! is zero, thusq4 is an irrelevant
parameter in the problem. In a similar way one can show t
all terms in the expansion containingq2n with n.1 vanish-
ing in the Rayleigh limite→0. Thus using Eq.~7!

lim
e→0

ln@W̄eq~k!#52
T

2M
k2. ~8!

From Eq.~8! it is easy to see that the Maxwell velocity PD
for the tracer particleM is obtained. Thus as expected Ma
well’s equilibrium is stable in the sense that for a large cla
of gas particle velocity PDF’s Maxwell equilibrium is ob
tained.

Now we assume thatf ( ṽm) has a power-law behavior
i.e., q(x)}uxu2(11a) when uxu→` and 0,a,2. For this
case the gas particle characteristic function is

f̄ ~k!512
qa

G~11a! S T

mD a/2

ukua1
qb

G~11b! S T

mD b/2

ukub

1o~ ukub!, ~9!

where a,b<2a. qa and qb are dimensionless number
which depend of course onq(x). Without loss of generality
we may setqa51. In Eq. ~9! we have used the assumptio
that f ( ṽm) is even.

Inserting Eq.~9! in Eq. ~4! we obtain a smallk expansion
ln@W̄eq(k)#. Taking the limit e→0 one can show that the
terms containingqb are much smaller than the leading ter
ln@W̄eq(k)#}2ukua. Thus qb , and in a similar way higher-
order coefficients, become the irrelevant parameters of
problem. Thus we find that the tracer particle equilibriu
characteristic function is

W̄eq~k!;expF2
2a21

aG~11a! S T

M D a/2 ukua

e12a/2G , ~10!

thus a Lévy velocity distribution for the tracer particle i
obtained. ForaÞ2 the equilibrium Eq.~10! depends one,
while for the Maxwell’s casea52, the equilibrium is inde-
pendent of the coupling constante. Equation~10! implies
that variance of the velocity diverges whena,2. For the
non-Maxwellian case the velocity distribution is charact
ized by the scale (T/M )a/2 which determines the width of the
velocity distribution.

The asymptotic behavior Eq.~10! is now demonstrated
using numerical examples. We consider three types of
particle velocity PDF’s, for large values ofuvmu→` these
PDF’s exhibit f ( ṽm)}uṽmu25/2, namely a53/2. Case 1
f ( ṽm)5N1 /@1132/3Am/(4T)uṽmu#5/2, case 2, f ( ṽm)
5N2 /@11mṽm

2 /(0.439T)#5/4, whereN1 andN2 are normal-
4-2
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ization constants. Case 3, the gas particle velocity P
is a Lévy PDF with index 3/2 whose FT isf̄ (k)
5exp†2(T/m)3/4@ uku3/2/G(5/2)#‡.

According to our theory these power-law velocity PDF
yield a Lévy equilibrium for the tracer particle when th
mass ratio becomes small, Eq.~10!. In Fig. 1 we show nu-
merically exact solution of the problem for cases 1–3. Th
solutions, obtained using Eq.~4! for finite values ofe, show
a good agreement between numerical results and
asymptotic theory. The Le´vy equilibrium for the tracer par-
ticle is not sensitive to precise shape of the velocity distri
tion of the gas particle, and hence like the Maxwell distrib
tion is stable.

We now consider a Fokker-Planck equation which d
scribes the evolution of the tracer particle PDFW(Vm ,t)
towards the Le´vy equilibrium Eq. ~10!. The equation is of
fractional order and is obtained using a smalle expansion of
Eq. ~1! ~details to be published!,

]W~VM ,t !

]t
.

D̄

e12a/2

]aW~VM ,t !

]uVMua
1g

]

]VM
@VMW~VM ,t !#.

~11!

In Eq. ~11! the Riesz fractional derivative was used@4#, and
the dissipation term isg52eR. A generalized Einstein rela
tion,

D̄5
2a21

G~11a! S T

M D a/2

g, ~12!

yields the relation between the transport coefficientsD̄ and
g. Whena52 the Einstein relation is recovered. Note th
Refs. @6–9# investigated related fractional processes ba
on a stochastic approach~e.g., Langevin equations with Le´vy

FIG. 1. We show the FT of the equilibrium velocity distributio
of the tracer particle. Numerically exact solutions of the probl
are obtained using three long tailed gas particle velocity PD
defined in text: case 1 squares, case 2 triangles, and case 3
monds. The tracer particle equilibrium is well approximated by

Lévy distribution the solid curve;W̄eq(k);exp(22.211uk/e1/6u3/2).
For the numerical results we usedT54.555, e51e25, and M
51.
05510
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noise!. In those investigations dissipation and fluctuatio
were treated as though they are independent, hence the
librium obtained there differs from ours.

Model 2. The question remaining is whether Le´vy equi-
librium a general feature, which might be obtained fro
other collision models. Specifically, it is interesting to see
Lévy equilibrium is compatible with a nonlinear Boltzman
equation approach, since one may suspect that the Le´vy be-
havior obtained so far is limited to linear Boltzmann mode
For this aim we investigated the one-dimensional~1D!
driven inelastic Maxwell model~DIMM !. This model was
investigated extensively in recent years in the context of
elastic gases assuming finite variance boundary condit
~see details below! @10,11#. Our goal is to investigate DIMM
in the quasielastic limit showing that Le´vy statistics de-
scribes the equilibrium; the Maxwell-Gauss distribution
recovered in the proper limit.

First consider the inelastic Maxwell model in theabsence

of external driving forcesẆ(V,t)5I (V,W), where the non-
linear collision integral is

I ~V,W![2W~V,t !1
1

pE2`

`

W~u,t !WS v2qu

p
,t Ddu.

~13!

In Eq. ~13! p5(r 11)/2 andq512p wherer is the restitu-
tion coefficient 0,r<1. The kinetic scheme describes
situation where momentum is conserved during collis
events, while energy is conserved only whenr 51. If r ,1
the steady state solution of Eq.~13! is Wss(V)5d(V), re-
flecting the loss of energy during collision events. Note th
for elastic collisionsr 51, any initial velocity distribution is
a steady-state solution. This is expected~and not informa-
tive! since two identical 1D elastic particles exchange th
velocities in collision events.

Let W̄(k,t) be the FT ofW(V,t). The boundary condi-
tions we will consider are

W̄~k,t !;12
^uVua&ukua

G~11a!
, ~14!

for small k. SinceW(V,t) is a non-negative PDF we hav
0,a<2. Using the Boltzmann equation~13! it is easy to
show that in the elastic limitr 51, ]^uVua&/]t50. For the
standard casea52 considered in Ref.@11#, Eq. ~14! simply
reflects energy conservation, i.e.,^V2& is a constant of mo-
tion. Fora,2, ^uVua& describes the width of the probabilit
packet, which for elastic collision is a conserved quantity

As mentioned, whenr ,1 the inelastic collisions will
shrink any initial probability packet to be concentrated
V50. Similar to previous work@11#, an infinitesimalheating
term is added to the equation of motion, which compensa
the energy loss. We will consider the boundary conditio
described in Eq.~14!, while Ref.@11# considered the Gauss
ian casea52. To obtain behavior compatible with Eq.~14!
we consider the fractional DIMM,

’s
ia-

e
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]W~V,t !

]t
2Da

]aW~V,t !

]uVua
5I ~V,W!. ~15!

It is more convenient to consider this fractional equation
Fourier space; this yields the nonlinear and nonlocal eq
tion

Ẇ̄~k,t !1~11Daukua!W̄~k,t !5W̄~pk,t !W̄~qk,t !.
~16!

For our aim this equation gives the definition of the fra
tional derivative in Eq.~15!. Our aim is to investigate the
steady-state solution of this equation in the quasielastic l
when Da→0 and r→1. This limit is taken in such a way
that the boundary condition Eq.~14! is satisfied.

Using the condition]^uVua&/]t50, and Eqs.~14! and
~16! we obtain

Da5
^uVua&

G~11a!
~12pa2qa!. ~17!

Without loss of generality we may set noŵuVua&51. For
a51 we haveDa50, while for 0,a,1 Da obtains nega-
tive values. The casea51 marks the transition between
finite (a.1) and infinite (a,1) first-order moment of ve-
locity *2`

` uVuW(V,t)dV. For a,1 no steady state is ob
tained, since the dissipation due to collisions is not stro
enough to compensate the heating. Our results in what
lows are restricted to 1,a<2.

Steady-state solution of Eq.~16! satisfies

~11Daukua!W̄ss~k!5W̄ss~pk!W̄ss~qk!. ~18!

An iteration method is used to obtain the solution. L
c(k)[ ln@W̄ss(k)#, and using Eq.~18! we have

c~k!5c~pk!1c~qk!2 ln@11Daukua#. ~19!

The boundary condition Eq.~14! yields c(k);2ukua/G(1
1a). The solution of Eq.~19! is obtained using the iteratio
rule

cn11~k!5cn~pk!1cn~qk!2 ln@11Daukua#, ~20!
-

05510
a-

-

it

g
l-

t

where limn→`cn(k)5c(k) and the ‘‘initial condition’’ is
c0(k)52 ln@11Daukua#. Using these rules and some algeb
involving series expansions, we find

c~k!52 (
n51

`
~21!n11ukuanDa

n

n~12qan2pan!
, ~21!

where the condition 1,a<2 was used. Inserting Eq.~17! in
Eq. ~21! we obtain

c~k!52
ukua

G~11a!
1

a~12r !

8

uku2a

@G~11a!#2
1O~ uku3a!.

~22!

The interesting thing to notice is that the second term on
right-hand side of Eq.~22! vanishes when the elastic lim
r→1 is considered. Inserting Eq.~17! in Eq. ~21! one can
show that in the elastic limit limr→1c(k)52ukua/G(1
1a). Hence the steady-state characteristic function is
stretched exponential,

lim
r→1

W̄ss~k!5expF2
ukua

G~11a!G ; ~23!

the inverse Fourier transform~FT! of this equation yields the
symmetric stable Le´vy density@2#. It is rewarding to find that
Maxwell and Lévy equilibriums are obtained only in th
elastic limit, thus conservation of energy in the collisio
events is related to the Le´vy-Maxwell behavior. Far from this
limit results not directly related to the Gauss-Le´vy central
limit theorem are obtained, Eq.~21!.

To conclude, we demonstrated the relation between e
librium properties of very different types of collision mode
and Lévy statistics. Thus stable behavior transcends det
of individual models and hence, I suspect, can be found
other types of collision models. To support the idea that Le´vy
velocity distribution might be found in other models, I no
the interesting work of Minet al. @12# who used numerica
simulations of a long-range interacting vortex model, a
showed that distribution of velocity fields are Le´vy stable.
t
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